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NONLINEAR LAWS OF DRY FRICTION IN CONTACT PROBLEMS

OF LINEAR THEORY OF ELASTICITY

UDC 539.3A. E. Alekseev

A problem of elastic body deformation with conditions of dry friction imposed at the boundary is
considered. Various friction laws are studied, including linear one-parameter and nonlinear two-
parameter laws. A general view of a nonlinear function with two constants is suggested, which
determines the friction force as a function of normal pressure. The problem of elastic plate com-
pression by rough infinite plates for a variety of friction conditions on the contact surfaces is solved.
The plate equations are employed, which make it possible to specify arbitrary conditions on the front
faces without reducing the order of differential equations. The unknown boundary of ideal contact
zones and sliding zones is determined. Solutions obtained by using various friction conditions on the
contact surfaces are compared.

1. Formulation of the Problem. Let us consider an elastic body of volume V bounded by the surface S,
with friction conditions being specified on its portion Sτ . Let P be the vector of external forces acting on the
surface S. Let us resolve P into components tangential τ and normal σn to the surface S:

P = τ + σnn, (1)

where n is the unit vector of the outer normal.
The law of dry friction (friction without lubrication) implies that such conditions are specified on the contact

surface Sτ , for which the value of tangential stresses depends only on the value of normal stresses, i.e., tangential
and normal components of the vector of external forces (1) are related as

|τ | = τ(|σn|, γi), i = 1, N. (2)

Here, τ is some positive function, γi is a set of parameters characterizing the roughness of the contact surface,
strength properties of the contact bodies, etc. The function τ(|σn|, γi) in (2) specifies the particular dry friction
law on the contact surface.

Among the simplest examples of mathematical simulation of the friction process, there are one-parameter
(N = 1) laws

τ(|σn|, τs) = τs; (3)

τ(|σn|, k) = k|σn|. (4)

The first relation is the law of a constant friction force, and the second is the Amonton–Coulomb law of friction.
The parameter τs can be interpreted as the yield stress of the contacting layer. The friction laws (3) and (4) have
been theoretically investigated [1] and are widely used in calculations. However, when relations (3) and (4) are used,
the results are often unsatisfactory. Thus, the law of a constant friction force (3) provides a sufficiently accurate
description of external friction in the zones of high normal stresses but can introduce a large error for the areas with
normal stresses approaching zero. The Amonton–Coulomb friction law (4) is applicable for low normal pressures.
As is noted in [2], the relationship between the specific friction force and normal specific pressure is more complex.
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It would be feasible to use two-parameter friction functions (N = 2) depending simultaneously on the parameters
τs and k, as such a dependence is free from the above-mentioned disadvantages:

|τ | = τ(|σn|, k, τs) = τsg(η), η = k|σn|/τs. (5)

As an example of a two-parameter dependence, we can name the Prandtl–Il’yushin friction law [3, 4], to
which there corresponds a piecewise linear function

gc(η) = 0.5(η + 1− |η − 1|), η ∈ [0,∞). (6)

In zones with low normal stresses (η < 1), from (5) there follows the Amonton–Coulomb friction law (3), and in
high-pressure areas (η > 1), there follows the law of a constant friction force (4).

The distribution of contact stresses can be described more completely by relations based on nonlinear func-
tions g(η), η ∈ [0,∞) satisfying the conditions

g(0) = 0, g(∞) = 1,

dg

dη
(0) = 1,

dg

dη
(η) > 0, η ∈ [0,∞).

(7)

The function g(η) is positive, monotonously increasing, with an asymptote at η → ∞. For every η ∈ [0,∞) there
holds the inequality

g(η) 6 gc(η) 6 1. (8)

Conditions (7) define a convex set of functions G, where each function specifies the nonlinear two-parameter
friction law (5). Elements of this set are, for example, the functions

g(η) = η/(1 + η), g(η) = 1− e−η, g(η) = η/
√

1 + η2, g(η) = tanh η.

The first two dependences coincide with the Tirion and Bartenev–Lavrent’ev dependences obtained in processing
the experimental data of [5] to accuracy of notation.

Similarly to (1), let us resolve the displacement vector at the boundary S into tangential (uτ ) and normal
(un) components:

u = uτ + unn.

Let us formulate the two-parameter law of dry friction (6) in the form similar to that of [1]:
— on the surface, Sτ σn 6 0, un = u∗;
— within the ideal contact zone,

|τ | < τsg(η) ⇒ uτ = 0; (9)

— in the sliding zone,

|τ | = τsg(η) ⇒ ∃λ > 0 uτ = −λτ . (10)

It follows from (10) that the function λ in the sliding zone has the form

λ = |uτ |/(τsg(η)) (11)

and

τ = −sign (uτ )τsg(η), η = k|σn|/τs. (12)

Relations (9)–(12) for a specified function g(η) satisfying conditions (7) determine a two-parameter nonlinear
friction law with an unknown boundary of ideal contact zones and sliding zones.

In order to compare one- and two-parameter friction laws, let us consider the problem of elastic plate
compression by rough infinite plates. Three variants of friction on the contact surfaces are assumed: the law of
a constant tangential stress, Coulomb’s friction law, and the Prandtl–Il’yushin law with a piecewise-linear friction
function. These conditions were chosen for the following reasons. The law of a constant friction force and Coulomb’s
friction law are classical and most widely used in calculations, and the piecewise linear dependence is a combination
of the first two laws. At the same time, the piecewise-linear friction function depends on two parameters and
possesses a limit property [see inequality (8)] for the set G of friction functions satisfying conditions (7).
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Fig. 1

2. Plate Compression by Rough Infinite Plates. A plate of thickness 2h and width 2l under conditions
of plane strain is compressed by rigid rough plates with a specified displacement v∗ (Fig. 1).

Let us use equations of elastic strain of plates and shells [6, 7], based on the series expansion of the sought
functions in Legendre polynomials. These equations admit specification of arbitrary conditions on the front faces
without reducing the order of differential equations. One can specify stresses, displacements, or combined conditions.
This allows a correct formulation of conjugation conditions at the interface of zones of sliding and adhesion (ideal
contact). Such equations were used in solving the problems of elastic strain of layered bodies [8–10].

The stresses are approximated by truncated series in Legendre polynomials Pk(ξ) (ξ = y/h):

2hσx = N + 3MP1(ξ)/h, σy = p0 + ∆pP1(ξ), 2hσxy = Q+ 2h∆qP1(ξ) + (2hq0 −Q)P2(ξ),
(13)

∆p = 0.5(p+ − p−), p0 = 0.5(p+ + p−), ∆q = 0.5(q+ − q−), q0 = 0.5(q+ + q−).

Here N =

h∫
−h

σx dy is the force, M =

h∫
−h

σxy dy is the moment, Q =

h∫
−h

σxy dy is the transverse shear force, and p±

and q± are the normal and tangential stresses on the contact surfaces (ξ = ±1).
The displacements and strains are approximated by truncated series in Legendre polynomials

ux = u+ ψP1(ξ) + (u0 − u)P2(ξ) + (∆u− ψ)P3(ξ), uy = v + ∆vP1(ξ) + (v0 − v)P2(ξ),

ex =
du

dx
+
dψ

dx
P1(ξ), ey =

1
h

∆v +
3
h

(v0 − v)P1(ξ),

exy =
dv

dx
+

1
h

∆u+
3
h

(u0 − u)P1(ξ) +
5
h

(∆u− ψ)P2(ξ),
(14)

∆u = 0.5(u+ − u−), u0 = 0.5(u+ + u−), ∆v = 0.5(v+ − v−), v0 = 0.5(v+ + v−).

Here u =
1
2

1∫
−1

ux dξ and v =
1
2

1∫
−1

uy dξ are displacements averaged through the thickness, ψ =
3
2

1∫
−1

uxξ dξ is

the rotation angle of the normal vector to the midplane y = 0, and v± and u± are the normal and tangential
displacements on the contact surfaces (ξ = ±1).

Unknown functions entering into the polynomial coefficients in formulas (13) and (14) are found from a
system comprising the following equations:

— equations of equilibrium

dN

dx
+ 2∆q = 0,

dM

dx
−Q+ 2hq0 = 0,

dQ

dx
+ 2∆p = 0; (15)

— differential equations obtained from Hooke’s law

du

dx
=

N

2hE∗
− ν∗

p0

E∗
,

dψ

dx
=

3M
2h2E∗

− ν∗
∆p
E∗

,
dv

dx
+

∆u
h

=
Q

2hµ
; (16)
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— algebraic equations obtained from Hooke’s law

u0 − u =
h

3µ
∆q, ∆u− ψ =

h

5µ

(
q0 −

Q

2h

)
, ∆v = h

p0

E∗
− ν∗

N

2E∗
,

v0 − v = h
∆p
3E∗

− ν∗
M

2hE∗
, E∗ =

E

1− ν2
, ν∗ =

ν

1− ν
.

(17)

Here E is Young’s modulus, µ is the shear modulus, and ν is Poisson’s ratio.
The system of ordinary differential equations (15) and (16) for the unknown functions N , M , Q, u, ψ, and v

is of the sixth order.
The unknown functions ∆u, u0, ∆v, v0, ∆p, p0, ∆q, and q0 are found from Eqs. (17) and the boundary

conditions on the contact surfaces ξ = ±1.
Since the problem is symmetric about the plane y = 0, the following relations for stresses hold on the

contact surfaces y = ±h (ξ = ±1): q+ = −q− = q and p+ = p− = p. Accordingly, for the displacements, we have
v+ = −v− = −v∗ and u+ = u− = w. Substitution of these relation into formulas (13) and (14) yields

q0 = 0, ∆q = q, p0 = p, ∆p = 0,
(18)

v0 = 0, ∆v = −v∗, u0 = w, ∆u = 0.

Here q, p, and w are the unknown functions and v∗ is the specified plate displacement.
For x = 0 (symmetry plane) and x = l (free surface), we have the following boundary conditions:

u = 0, ψ = 0, Q = 0 for x = 0,
(19)

N = 0, M = 0, Q = 0 for x = l.

Substitution of (18) into system (15)–(17) allowing for the boundary conditions (19) yields M = 0, Q = 0,
ψ = 0, and v = 0. There remain unknown functions N , u, p, q, and w calculated from the equations

dN

dx
+ 2q = 0,

du

dx
− N

2hE∗
+
ν∗p

E∗
= 0, (20)

u− w + hq/(3µ) = 0, v∗ + hp/E∗ − ν∗N/(2E∗) = 0

with the boundary conditions

u = 0 for x = 0, N = 0 for x = l. (21)

The fifth equation required to close system (20) follows from the chosen friction law.
Let us consider three variants of boundary conditions on the contact surfaces, i.e., ideal contact (w = 0),

constant tangential stress (q = −τs), and Coulomb’s friction law (q = kp). In the first case, equations (20) must be
supplemented by the condition

w = 0. (22)

The resulting system (20), (22) has the solution

u = A1 sinh (αx), α =
1
h

√
3(1− ν∗)

2
, N =

2hE∗
1− ν2

∗

(
αA1 cosh (αx)− ν∗v∗

h

)
,

q = − 3E∗
2h(1 + ν∗)

A1 sinh (αx), p =
E∗

1− ν2
∗

(
αν∗A1 cosh (αx)− v∗

h

)
.

(23)

This solution was obtained with allowance for the assumption that the ideal contact zone adjoins the axis (x = 0).
For the case of a constant tangential stress, the following equality must be supplemented:

q = −τs. (24)

System (20), (24) has a solution

N = 2τsx+A2, u = (1− ν2
∗)(τsx

2 +A2x)/(2hE∗) + ν∗v∗x/h+B2,

(25)
q = −τs, p = ν∗(2τsx+A2)/(2h)− E∗v∗/h.
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Fig. 2 Fig. 3

For the case of Coulomb’s friction law the following condition is added:

q = kp. (26)

System (20), (26) has the solution

N = A3 exp
(
− kν∗x

h

)
+ 2

E∗
ν∗

v∗, u = − 1− ν2
∗

2kν∗E∗
A3 exp

(
− kν∗x

h

)
+

v∗
ν∗h

x+B3,

q =
kν∗
2h

A3 exp
(
− kν∗x

h

)
, p =

ν∗
2h

A3 exp
(
− kν∗x

h

)
.

(27)

The solution of every contact problem considered below is a combination of the solutions obtained. The
unknown constants are found from the boundary conditions (21) and conjugation conditions at the interface of the
domains with different friction conditions:

[u] = 0, [N ] = 0, [q] = 0 for x = li (28)

(square brackets denote the function jump).
2.1. Law of a Constant Friction Force. For the displacement of the plates, at first there emerges one zone of

ideal contact [solution of (22)]. The constant A1 is obtained from the boundary condition on the free surface (21)

A1 = ν∗v∗/(αh cosh (αl)).

As compression intensifies, contact stresses increase. For v∗ = vp1, where vp1 = (τs(1− ν2
∗)/(ν∗E∗α))

× coth (αl), the contact tangential stress |q| on the edge of the plate for x = l reaches the value τs, and a second
zone emerges, i.e., the sliding zone.

Let us introduce the following dimensionless quantities:

q1 = |q|/τs, p1 = |p|h/(E∗vp1), V1 = v∗/vp1.

Figure 2 shows the distribution of dimensionless contact stresses q1 (curve 1) and p1 (curve 2).
For v∗ > vp1, the problem solution is a combination of two solutions (23) and (25). The zone of ideal contact

adjoins the y axis, and the sliding zone is adjoint to the free surface x = l. Let x = l1 be the equation of an unknown
interface between the sliding and adhesion zones. Constants entering in the solutions (23) and (25) are calculated
from the boundary conditions (21) and conjugation conditions (28).

The constants A1, A2, and B2 take the following values:

A1 =
(1− ν2

∗)τs(l1 − l) + ν∗v∗E∗
αhE∗ cosh (αl1)

, A2 = −2τsl, B2 = sinh (αl1)A1 −
τsl1(l1 − 2l)

2hE∗
− ν∗v∗l1

h
.

In order to determine the interface x = l1 (0 < l1 < l) between the ideal contact and sliding zones, we obtain a
transcendental equation

(1− ν2
∗)τs

ν∗E∗

(coth (αl1)
α

+ l − l1
)

= v∗.

With an increase in v∗, the sliding zone also increases and the interface x = l1 is shifted to the center.
Figure 3 shows the distribution of dimensionless contact stresses q1 (curve 1) and p1 (curve 2).
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An analysis of the solution obtained enables us to draw the following conclusions. Under plate displacement,
with an increase in load, the friction force attains the limiting value and then remains constant, which adequately
reflects the characteristic features of the external friction process [5]. At the same time, for low values of the normal
contact stress, it follows from the problem solution that, for every arbitrarily small value of τs (contact surface is
almost ideally smooth), there is a range of initial displacements 0 < v∗ < vp1, for which a ideal contact (adhesion)
takes place over the entire plate surface, which disagrees with experimental results.

2.2. Amonton–Coulomb Friction Law. When the Amonton–Coulomb friction law is used, there emerge two
zones: the ideal contact zone [solution (23)] adjoining the y axis and the sliding zone [solution (27)] adjoint to the
free surface x = l. The unknown constants entering in these solutions are found from the boundary conditions (21)
and conjugation conditions (28) at the interface of the zones x = l2.

The constants A1, A3, and B3 are calculated by the formulas

A1 =
2k(1 + ν∗)
3 sinh (αl2)

exp
(kν∗(l − l2)

h

)
, A3 = −2E∗v∗

ν∗
exp

(kν∗l
h

)
,

B3 = v∗

[(2k(1 + ν∗)
3

− 1− ν2
∗

kν2
∗

)
exp

(kν∗(l − l2)
h

)
− l2
ν∗h

]
.

The interface between the adhesion and sliding zones x = l2 is obtained from the transcendental equation

(1− ν2
∗) exp

(kν∗(l − l2)
h

)(kν∗ coth (αl2)
hα

+ 1
)

= 1. (29)

It follows from (29) that l2 does not depend on v∗, i.e., and the position of the interface between the adhesion
and sliding zones does not change under plate displacement.

The maximum value of the contact tangential stress is reached at the interface between the zones x = l2:

max |q| = (v∗kE∗/h) exp (kν∗(l − l2)/h). (30)

Under plate displacement, the value of max |q| increases and reaches τs for v∗ = vp2, where vp2 = hτs exp (kν
× (l2 − l)/h)/(kE).

It follows from (30) that, even for small values of v∗ (small plates displacement), the value of max |q| may
exceed the yield stress of the contact layer τs.

Let us introduce the following dimensionless quantities:

q2 = q1 = |q|/τs, p2 = |p|h/(E∗vp2), V2 = v∗/vp2.

Figure 4 shows the distribution of dimensionless contact tangential stress q2 (curve 1) and normal stress p2

(curve 2) for V2 < 1.
When the friction coefficient k changes from 0 to kp where kp = ν∗hα tanh (αl)/(1− ν2

∗), the values of l2
change from 0 to l, i.e., as k increases, the interface is shifted from the center to the edge of the plate.

For k > kp, we have l2 > l and the interface between the zones goes beyond the plate. Consequently, for
every v∗, there exists one zone, i.e., the zone of ideal contact. In this case, the problem solution coincides with the
solution from Sec. 2.1.

The following conclusions can be drawn from the analysis of the results obtained. The Amonton–Coulomb
friction law adequately describes the process of external friction at the initial stage of plate displacement when
the contact normal stresses are rather low. However, the application of this law to the case of the further plate
compression may yield physically erroneous results: the tangential contact stress can exceed the yield stress of the
contact layer. In addition, under displacement of the plates, the position of the interface between the zone of ideal
contact and the sliding zone does not change, and no sliding zone is formed for large values of the friction coefficient.

2.3. The Prandtl–Il’yushin Law with a Piecewise-Linear Friction Function. Let us consider two variants of
solutions: 1) for k < kp; 2) k > kp.

In the first case, the contact interaction at the initial stage obeys the Amonton– Coulomb friction law. The
solution coincides with that obtained in Sec. 2.2. Initially, two zones emerge: the ideal contact and sliding zones.

Under plate displacement, the corresponding value of max |q| [see (30)] increases, and reaches the value of
τs for v∗ = vp2. At this moment, the third zone emerges, i.e., the zone of a constant tangential stress.

Therefore, for v∗ > vp2, the problem solution is a combination of three solutions: (23), (25), and (27). The
ideal contact zone adjoins the y axis, it is followed by the zone of a constant friction force, and then comes the
sliding zone adjoint to the free surface x = l, which obeys the Amonton–Coulomb friction law.

627



Fig. 4 Fig. 5

There are two unknown interfaces: the first one at x = l1 separates the ideal contact zone from the zone
with contact interaction obeying the law of a constant friction force, and the second one at x = l3 separates the
zone of a constant friction force from the zone obeying the Amonton–Coulomb friction law. The constants entering
in the solutions (23), (25), and (27) are calculated from the boundary conditions (21) and conjugation conditions
(28) at the points x = l1 and x = l3.

The constants A1, A2, B2, A3, and B3 are calculated by the formulas

A1 =
1

αh cosh (αl1)

{v∗
ν∗

+ (1− ν2
∗)
[ τs
E∗

(l1 − l3)− v∗
ν∗

exp
(kv∗
h

(l − l3)
)]}

,

A2 = −2τsl3 + 2
E∗v∗
ν∗

exp
(kv∗
h

(l − l3)
)
, A3 = −2

E∗v∗
ν∗

exp
(kv∗
h

l
)
,

B2 = sinh (αl1)A1 −
1− ν2

∗
2hE∗

(τsl21 +A2l1)− v∗ν∗
h

(l3 − l1),

B3 = sinh (αl1)A1 +
1− ν2

∗
2hE∗

(τs(l23 − l21) +A2(l3 − l1)) +
v∗ν∗
h

(l3 − l1) +
(1− ν2

∗)kE∗
ν2
∗τs

.

The interface between the zones x = l1 and x = l3 is obtained using the equations

hτs
E∗k

exp
(kν∗
h

(l3 − l)
)

= v∗,

(1− ν2
∗)
[
1 +

kν∗
h

(coth (αl1)
α

+ l3 − l1
)]

= exp
(kν∗
h

(l3 − l)
)
.

Figure 5 shows the distribution of dimensionless contact stresses q2 (curve 1) and p2 (curve 2).
With plate displacement, the size of the contact zone with a constant friction force (l1 < x < l3) increases.

The interface x = l1 is shifted toward the center of the plate, and the interface x = l3 is shifted toward the free
surface.

For k > kp, the interface x = l2 goes beyond the plate [as in the case of the law of a constant friction force
(see Sec. 2.2)]. At the first stage, when v∗ < vp1, there is only one zone, i.e., the zone of an ideal contact. With
displacement of the plates, the maximum contact tangential stress increases when x = l and reaches the value of τs
for v∗ = vp1. At the same time, the second zone emerges, i.e., the zone of a constant tangential stress.

The solution obtained enables us to draw the following conclusion. Unlike the law of a constant friction force
and the Amonton–Coulomb law, the two-parameter Prandtl–Il’yushin law provides a sufficiently full description of
contact stresses both at high and low normal pressures.
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